Extracting Energy from Black Hole through Transition Region

نویسنده

  • Li-Xin Li
چکیده

A new scenario for extracting energy from a Kerr black hole is proposed. With magnetic field lines connecting plasma particles inside the ergosphere with remote loads, the frame dragging twists the field lines so that energy and angular momentum are extracted from the plasma particles. If the magnetic field is strong enough, the energy extracted from the particles can be so large that the particles have negative energy as they fall into the black hole. So effectively the energy is extracted from the black hole. The particles inside the ergosphere can be continuously replenished with accretion from a disk surrounding the black hole, so a transition region with sufficient amount of plasma is formed between the black hole’s horizon and the inner edge of the disk. Thus the energy can be continuously extracted from the black hole through the transition region. This may be the most efficient way for extracting energy from a Kerr black hole: in principle almost all of the rotational energy (up to ≈ 29% of the total energy of the black hole) can be extracted. Subject headings: black hole physics — magnetic fields — MHD

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The phase transition of corrected black hole with f(R) gravity

In this letter, we consider static black hole in f(R) gravity.We take advantage from corrected entropy and temperature and investigate such black hole. Finally, we study the $ P - V $ critically and phase transition of corrected black hole with respect to entropy and temperature. Here also, we obtain the heat capacity for the static black hole in $ f(R) $ gravity. This calculation help us...

متن کامل

Extracting Energy from a Black Hole through Its Disk.

When some magnetic field lines connect a Kerr black hole with a disk rotating around it, energy and angular momentum are transferred between them. If the black hole rotates faster than the disk, ca&solm0;GMH>0.36 for a thin Keplerian disk, then energy and angular momentum are extracted from the black hole and transferred to the disk (MH is the mass and aMH is the angular momentum of the black h...

متن کامل

Energetics of Black Hole-Accretion Disk System with Magnetic Connection: Limit of Low Accretion Rate

We study the energetics of a black hole-accretion disk system with magnetic connection: a Keplerian disk is connected to a Kerr black hole by a large-scale magnetic field going through the transition region. We assume that the magnetic field is locked to the inner boundary of the disk and corotates with the inner boundary, the accretion rate is low but the accretion from the disk can still prov...

متن کامل

Planckian Energy Scattering , Colliding Plane Gravitational Waves and Black Hole Creation

In a series of papers Amati, Ciafaloni and Veneziano and 't Hooft conjectured that black holes occur in the collision of two light particles at planckian energies. In this paper we discuss a possible scenario for such a process by using the Chandrasekhar-Ferrari-Xanthopoulos duality between the Kerr black hole solution and colliding plane gravitational waves. We clarify issues arising in the de...

متن کامل

Some remarks on black hole temperature and the second law of thermodynamics

I present a formulation of the second law of thermodynamics in the presence of black holes which makes use of the efficiency of an ideal machine extracting heat cyclically from a black hole. The Carnot coefficient is found and it is shown to be a simple function of the mass. Black holes are known to radiate energy thermally with a temperature given by a simple function of the mass of the black ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000